extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D5).1C23 = C2×D8⋊D5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).1C2^3 | 320,1427 |
(C4×D5).2C23 = D8⋊13D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).2C2^3 | 320,1429 |
(C4×D5).3C23 = C2×D40⋊C2 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).3C2^3 | 320,1431 |
(C4×D5).4C23 = C2×SD16⋊D5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).4C2^3 | 320,1432 |
(C4×D5).5C23 = D20.29D4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).5C2^3 | 320,1434 |
(C4×D5).6C23 = C2×Q16⋊D5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).6C2^3 | 320,1436 |
(C4×D5).7C23 = D20.30D4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).7C2^3 | 320,1438 |
(C4×D5).8C23 = Q16⋊D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).8C2^3 | 320,1440 |
(C4×D5).9C23 = D8⋊15D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 4+ | (C4xD5).9C2^3 | 320,1441 |
(C4×D5).10C23 = D8⋊11D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).10C2^3 | 320,1442 |
(C4×D5).11C23 = D20.47D4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | 4- | (C4xD5).11C2^3 | 320,1443 |
(C4×D5).12C23 = D5×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).12C2^3 | 320,1444 |
(C4×D5).13C23 = D8⋊5D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).13C2^3 | 320,1446 |
(C4×D5).14C23 = D8⋊6D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).14C2^3 | 320,1447 |
(C4×D5).15C23 = D5×C8.C22 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).15C2^3 | 320,1448 |
(C4×D5).16C23 = C40.C23 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).16C2^3 | 320,1450 |
(C4×D5).17C23 = D20.44D4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | 8- | (C4xD5).17C2^3 | 320,1451 |
(C4×D5).18C23 = C2×Q8.10D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).18C2^3 | 320,1617 |
(C4×D5).19C23 = C2×D4.10D10 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).19C2^3 | 320,1620 |
(C4×D5).20C23 = D20.37C23 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).20C2^3 | 320,1623 |
(C4×D5).21C23 = D5×2- 1+4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).21C2^3 | 320,1624 |
(C4×D5).22C23 = D20.39C23 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).22C2^3 | 320,1625 |
(C4×D5).23C23 = D8×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).23C2^3 | 320,1068 |
(C4×D5).24C23 = D40⋊C4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).24C2^3 | 320,1069 |
(C4×D5).25C23 = D8⋊5F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).25C2^3 | 320,1070 |
(C4×D5).26C23 = D8⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).26C2^3 | 320,1071 |
(C4×D5).27C23 = SD16×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).27C2^3 | 320,1072 |
(C4×D5).28C23 = SD16⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).28C2^3 | 320,1073 |
(C4×D5).29C23 = SD16⋊3F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).29C2^3 | 320,1074 |
(C4×D5).30C23 = SD16⋊2F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).30C2^3 | 320,1075 |
(C4×D5).31C23 = Q16×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).31C2^3 | 320,1076 |
(C4×D5).32C23 = Dic20⋊C4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).32C2^3 | 320,1077 |
(C4×D5).33C23 = Q16⋊5F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).33C2^3 | 320,1078 |
(C4×D5).34C23 = Q16⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).34C2^3 | 320,1079 |
(C4×D5).35C23 = C2×D20⋊C4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).35C2^3 | 320,1104 |
(C4×D5).36C23 = (D4×C10)⋊C4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).36C2^3 | 320,1105 |
(C4×D5).37C23 = C2×D4⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).37C2^3 | 320,1106 |
(C4×D5).38C23 = (C2×D4)⋊6F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).38C2^3 | 320,1107 |
(C4×D5).39C23 = C2×Q8⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).39C2^3 | 320,1119 |
(C4×D5).40C23 = (C2×Q8)⋊4F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).40C2^3 | 320,1120 |
(C4×D5).41C23 = C2×Q8⋊2F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).41C2^3 | 320,1121 |
(C4×D5).42C23 = (C2×Q8)⋊6F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).42C2^3 | 320,1122 |
(C4×D5).43C23 = D5⋊C4≀C2 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).43C2^3 | 320,1130 |
(C4×D5).44C23 = C4○D4⋊F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).44C2^3 | 320,1131 |
(C4×D5).45C23 = C4○D20⋊C4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).45C2^3 | 320,1132 |
(C4×D5).46C23 = D4⋊F5⋊C2 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).46C2^3 | 320,1133 |
(C4×D5).47C23 = C2×D4.F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).47C2^3 | 320,1593 |
(C4×D5).48C23 = Dic5.C24 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).48C2^3 | 320,1594 |
(C4×D5).49C23 = C2×D4×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | | (C4xD5).49C2^3 | 320,1595 |
(C4×D5).50C23 = D10.C24 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).50C2^3 | 320,1596 |
(C4×D5).51C23 = C2×Q8.F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).51C2^3 | 320,1597 |
(C4×D5).52C23 = Dic5.20C24 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).52C2^3 | 320,1598 |
(C4×D5).53C23 = C2×Q8×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).53C2^3 | 320,1599 |
(C4×D5).54C23 = D5.2- 1+4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).54C2^3 | 320,1600 |
(C4×D5).55C23 = Dic5.21C24 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).55C2^3 | 320,1601 |
(C4×D5).56C23 = Dic5.22C24 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).56C2^3 | 320,1602 |
(C4×D5).57C23 = C4○D4×F5 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).57C2^3 | 320,1603 |
(C4×D5).58C23 = D5.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).58C2^3 | 320,1604 |
(C4×D5).59C23 = C2×D5×D8 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).59C2^3 | 320,1426 |
(C4×D5).60C23 = C2×D8⋊3D5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).60C2^3 | 320,1428 |
(C4×D5).61C23 = C2×D5×SD16 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).61C2^3 | 320,1430 |
(C4×D5).62C23 = C2×SD16⋊3D5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).62C2^3 | 320,1433 |
(C4×D5).63C23 = C2×D5×Q16 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).63C2^3 | 320,1435 |
(C4×D5).64C23 = C2×Q8.D10 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).64C2^3 | 320,1437 |
(C4×D5).65C23 = D5×C4○D8 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).65C2^3 | 320,1439 |
(C4×D5).66C23 = SD16⋊D10 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).66C2^3 | 320,1445 |
(C4×D5).67C23 = D40⋊C22 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).67C2^3 | 320,1449 |
(C4×D5).68C23 = C22×Q8×D5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).68C2^3 | 320,1615 |
(C4×D5).69C23 = C22×C8⋊D5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).69C2^3 | 320,1409 |
(C4×D5).70C23 = C2×D20.3C4 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).70C2^3 | 320,1410 |
(C4×D5).71C23 = C2×D20.2C4 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).71C2^3 | 320,1416 |
(C4×D5).72C23 = C40.47C23 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).72C2^3 | 320,1417 |
(C4×D5).73C23 = C20.72C24 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).73C2^3 | 320,1422 |
(C4×D5).74C23 = C10.C25 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).74C2^3 | 320,1621 |
(C4×D5).75C23 = C2×C40⋊C4 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).75C2^3 | 320,1057 |
(C4×D5).76C23 = C2×D5.D8 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).76C2^3 | 320,1058 |
(C4×D5).77C23 = (C2×C8)⋊6F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).77C2^3 | 320,1059 |
(C4×D5).78C23 = C2×C40.C4 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).78C2^3 | 320,1060 |
(C4×D5).79C23 = C2×D10.Q8 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).79C2^3 | 320,1061 |
(C4×D5).80C23 = (C8×D5).C4 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).80C2^3 | 320,1062 |
(C4×D5).81C23 = M4(2)⋊1F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).81C2^3 | 320,1065 |
(C4×D5).82C23 = M4(2).1F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).82C2^3 | 320,1067 |
(C4×D5).83C23 = C22×C4.F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).83C2^3 | 320,1588 |
(C4×D5).84C23 = C22×C4⋊F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).84C2^3 | 320,1591 |
(C4×D5).85C23 = C2×C8×F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).85C2^3 | 320,1054 |
(C4×D5).86C23 = C2×C8⋊F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).86C2^3 | 320,1055 |
(C4×D5).87C23 = C20.12C42 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).87C2^3 | 320,1056 |
(C4×D5).88C23 = M4(2)×F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).88C2^3 | 320,1064 |
(C4×D5).89C23 = M4(2)⋊5F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).89C2^3 | 320,1066 |
(C4×D5).90C23 = C22×D5⋊C8 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).90C2^3 | 320,1587 |
(C4×D5).91C23 = C2×D5⋊M4(2) | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).91C2^3 | 320,1589 |
(C4×D5).92C23 = C22×C4×F5 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).92C2^3 | 320,1590 |
(C4×D5).93C23 = C2×D10.C23 | φ: C23/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).93C2^3 | 320,1592 |
(C4×D5).94C23 = D5×C22×C8 | φ: trivial image | 160 | | (C4xD5).94C2^3 | 320,1408 |
(C4×D5).95C23 = C2×D5×M4(2) | φ: trivial image | 80 | | (C4xD5).95C2^3 | 320,1415 |
(C4×D5).96C23 = D5×C8○D4 | φ: trivial image | 80 | 4 | (C4xD5).96C2^3 | 320,1421 |